
Moving in a Crowd: Safe and Efficient Navigation Among Heterogeneous Agents

Julio Godoy and Ioannis Karamouzas and Stephen J. Guy and Maria Gini
Department of Computer Science and Engineering

University of Minnesota
200 Union St SE, Minneapolis MN 55455
{godoy, ioannis, sjguy, gini}@cs.umn.edu

Abstract
Multi-agent navigation methods typically assume
that all agents use the same underlying framework
to navigate to their goal while avoiding colliding
with each other. However, such assumption does
not hold when agents do not know how other agents
will move. We address this issue by proposing a
Bayesian inference approach where an agent esti-
mates the navigation model and goal of each neigh-
bor, and uses this to compute a plan that minimizes
collisions while driving it to its goal. Simulation
experiments performed in many scenarios demon-
strate that an agent using our approach computes
safer and more time-efficient paths as compared to
those generated without our inference approach and
a state-of-the-art local navigation framework.

1 Introduction
The safe and efficient navigation of agents is critical in
the deployment of robots in real world applications such as
multi-robot exploration, task allocation and search and res-
cue. This problem is challenging especially when the envi-
ronment is populated with unknown moving agents, as the
uncertainty about their future motions prevents the utility of
pre-computing a collision-free and time-efficient path.

Many approaches for decentralized navigation in multi-
agent environments have been proposed. However, they typ-
ically assume that all agents use the same navigation method,
which does not necessarily hold in partially known environ-
ments. When there is uncertainty on the dynamics of the envi-
ronment, an agent should be extra cautious to reduce the risk
of collisions when moving to its goal. However, this behavior
could also translate into unnecessarily long paths, resulting in
inefficient motion. This limits the agent’s ability to compute
safe but also efficient paths.

In this work, we address this problem. Assuming a finite
set of possible navigation models (such as the current most
popular multi-robot navigation approaches) and goals in an
environment, we use a Bayesian inference approach to esti-
mate the probability that each of the agent’s neighbors uses a
specific model and moves to one of the goals, based on obser-
vations of its motion. Once a model and goal are estimated
for a neighbor, it can be used to predict its future motion along

with its neighborhood interactions. This allows for the com-
putation of a safe path that takes the agent closer to its goal.

This work makes three main contributions. First, we pro-
pose a Bayesian method to infer the models and goals of the
agents in a partially known environment. Second, we pro-
pose an action planning technique that incorporates the in-
ferred motions and goals to compute collision-free and time-
efficient paths. Third, we experimentally validate our ap-
proach and show that it leads to safer and more efficient mo-
tions in a variety of scenarios as compared to a state-of-the-
art collision avoidance framework [van den Berg et al., 2011],
and to planning without estimation of the models and goals.

2 Related Work
The multi-agent navigation problem has been extensively
studied in robotics, AI, and the crowd simulation commu-
nity. Over the years different approaches have been pro-
posed, including reactive techniques based on artificial po-
tential fields [Khatib, 1986; Karamouzas et al., 2014], social
force models that use a mixture of physical and psychological
forces [Helbing et al., 2000; Pelechano et al., 2007], graph-
based techniques [Luna and Bekris, 2011; Solovey et al.,
2015; Sharon et al., 2015; Cirillo et al., 2014] and learning-
based approaches [Melo and Veloso, 2011; Martinez-Gil et
al., 2015]. Recently, approaches that plan directly in the ve-
locity space [Fiorini and Shiller, 1998] have gained a lot of
popularity due to their robust nature and the guarantees that
they offer about collision freeness. Among the most pop-
ular approaches is the ORCA framework that selects new
collision-free velocities for the agents by solving a low di-
mensional linear program [van den Berg et al., 2011]. ORCA
has been extended to simulate agents that have different per-
sonalities [Guy et al., 2011], account for uncertainty [Kim
et al., 2014], as well as agents that can quickly reach their
goals by implicitly coordinating with each other [Godoy et
al., 2016]. However, unlike our approach, all the aforemen-
tioned multi-agent techniques assume that the agents use the
same underlying method to navigate through the environ-
ment.

Most closely related to our work is the approach of Choi
et al. [2014] that uses a reactive Gaussian-based motion con-
troller to address the issue of safe robot navigation in human
populated environments. [Trautman et al., 2015] explores
robot navigation in dense pedestrian crowds to predict pedes-

trian trajectories and achieve cooperative motion. The com-
plexity of these approaches limits their ability to predict tra-
jectories of more than 10 dynamic entities, in order to have
real-time operation. Instead, we aim at computing both safe
and time-efficient trajectories in simulated environments with
up to 100 agents in real time.

Finally, prior work has also addressed interactions with
heterogeneous agents based on Bayesian learning (see,
e.g. [Barrett and Stone, 2015; Barrett et al., 2013]). In partic-
ular, Barrett et al. [2015] used a Bayesian framework to learn
the types of other agents in the Robocup domain. However,
in this domain, agents can only move according to a given
set of rules, and only interact with agents of known types. In
contrast, in our multi-agent navigation domain, the agents can
assume both known and unknown types.

3 Problem Formulation

In this paper, we address the problem of safely navigating an
agent to its goal position in a time-efficient manner through
environments that are populated by unknown heterogeneous
agents. More formally, we are given an agent α modeled as
a disk with radius r that has to reach a goal g. At each time
instant t, we denote the agent’s position as pt, and its velocity
as vt that is subject by a maximum speed υmax. Furthermore,
α has a preferred velocity vpref , indicating the agent’s desired
direction of motion and speed. The environment for agent
α is defined as a 2D virtual or physical space that includes
other n (initially unknown) heterogeneous agents A1 . . . An.
Similar to α, each agent Ai has a radius ri, a position pi, a
velocity vi and a goal position gi.

The task is then twofold: first, determine how the neigh-
bors of α navigate in the environment, and second, use this
information to steer α to its goal, avoiding collisions with the
n heterogeneous agents while minimizing its travel time.

Assumptions. We assume that a fixed number of goal lo-
cations G exist that each agent Ai can choose from. Further-
more, a set M of different navigation models is given and
each agent Ai is only allowed to use one of these models
throughout a simulation. Finally, we assume that α has a par-
tial knowledge about the environment in which it navigates.
Specifically, α can sense the positions and velocities of its
nearby agents, NNα ⊂ A, located inside a limited sensing
range, but it is not aware of the goals of its neighbors and the
navigation models that they employ.

Proposed approach. We propose a Bayesian inference ap-
proach to estimate the probability that an agent in A uses one
of the |M| specified navigation models while moving towards
one of the |G| known goals in the environment. With an esti-
mate computed at each timestep of the model and goal of each
agentAi, α can plan over a set of possible actions to minimize
the risk of collisions and generate time-efficient motions.

The agent α can consider two sets of actions. It can ei-
ther optimize over a set of different preferred velocities while
keeping its navigation parameters fixed, or plan over a set
of different navigation models while having a fixed goal-
oriented preferred velocity with a magnitude equal to υmax.
See Section 5 for more details.

Algorithm 1 General approach

1: initialize simulation
2: while not at the goal do
3: for all i ∈ NNα do
4: observe i velocity and position
5: Predi ← NeighborInference(i)
6: PredSet← PredSet ∪ Predi
7: end for
8: a∗ ← ActionSelection(PredSet)
9: vnew ← CollisionAvoidance(a∗)

10: pt+1 ← pt + vnew ·∆t
11: end while

As soon as an optimal action a∗ is chosen, it is mapped to a
new velocity vnew using an anticipatory collision avoidance
method based on the ORCA navigation framework [van den
Berg et al., 2011]. While in ORCA each pair of agents in-
volved in a potential collision shares the effort of averting the
collision, in our approach, the agent α takes full responsibility
of resolving a collision due to the presence of heterogeneous
neighbors.

A pseudocode of our approach can be seen in Algorithm 1.
While agent α has not reached its goal, it estimates the model
and goal for each sensed neighbor (line 5), using Bayesian
inference. It then uses this information to determine a new
action which takes into account the predicted motion of each
neighbor (line 8), according to its estimated model. The ac-
tion is then given as an input to the collision avoidance rou-
tine, to compute a new velocity that is collision-free (line 9).
After moving using its computed velocity, the cycle repeats
until α reaches its goal.

3.1 Navigation models
We consider the following navigation models for the agents in
A, which are representative of existing classes of multi-agent
navigation:

• Personality models: Three of the models are based on
the ORCA navigation framework [van den Berg et al.,
2011]. These models have different sets of parameter
values representing social behaviors or personalities, as
proposed in [Guy et al., 2011]. We consider three types
of agents: shy, aggressive, and tense.
• Social force model: In the work of Helbing et al. [2000],

the behavior of each agent is modeled as a collection of
forces. Each agent has an attractive force that steers it to
its goal. In addition, distance-dependent repulsive forces
are exerted on the agent from its nearby neighbors and
static obstacles. Thus, the social force model is a purely
reactive model as opposed to the anticipatory nature of
ORCA and its variants.
• Non-reactive: In this model, agents do not attempt to

avoid or resolve collisions, i.e. they are non-reactive and
just follow their goal oriented trajectories.

We also consider agents that might not use any of the spec-
ified navigation models, for example, in case of malfunction,
and can have random goals in the environment and random

navigation parameters. We note that our approach can be eas-
ily extended to account for new navigation models.

4 Bayesian Model Inference
We use a Bayesian approach for α to estimate the navigation
model and goal position of each of its neighbors. In particu-
lar, for each neighbor and at each timestep t, we compute the
position it will move to in t+1 assuming each of the possible
model/goal combinations (Fig. 1a).

a b

α αm0

m1

m?

Figure 1: Example of the Bayesian model inference, assum-
ing two navigation models and a single goal. (a) α predicts
the position of its neighbor in the next timestep, using each
of the two models m

0
and m

1
. (b) After the agents move, α

estimates its neighbor’s true model based on its new position.

At time t+1, α observes the new position of each neighbor
(Fig. 1b), and computes the likelihood of the observed posi-
tion given each of the possible models, assuming Gaussian
noise in their computed velocities.

P (pti|mj ∧ gk) ∼ N (pti;µ, σ), (1)

∀mj ∈ M and ∀gk ∈ G. To compute the likelihood that
the neighbor’s position was not generated by any model in
M, i.e. the neighbor uses an ‘unknown’ model, we use the
conjunction of the complements of all the model likelihoods,
which is equivalent to their multiplication (Eq. 2):

P (pt
i|mu ∧ gu) =

|M|·|G|∏
j=1
k=1

(1− P (pt
i|mj ∧ gk)) (2)

Once the likelihood values have been computed for all
model/goal pairs and a possible unknown model, the poste-
rior probabilities are computed using a uniform prior in the
first observation and the previous posterior as the prior in the
subsequent observations (Eq. 3). This represents the initial
uncertainty of the agent with respect to its neighbors’ mod-
els and goals, and as more evidence is incorporated, the true
model becomes more likely.

P (mj∧gk|pt
i) =

P (pt
i|mj ∧ gk) · P (mj ∧ gk|pt−1

i)
|M|∑
j
′
=1

|G|∑
k
′
=1

P (pt
i|mj

′ ∧ gk
′) · P (mj

′ ∧ gk
′ |pt−1

i)

(3)

4.1 Model Selection
Model Estimation. After computing the posterior probabili-
ties for each model at each timestep, α can estimate the true
model of each neighbor. While choosing the model with the

Algorithm 2 Model Selection for neighbor i

1: for k = 1, . . . , |G| do
2: for j = 1, . . . , |M| do
3: ComputeLikelihood(i,mj ,gk) (Eq. 1)
4: ComputePosterior(i,mj ,gk) (Eq. 3)
5: end for
6: end for
7: ComputeLikelihood(i,mu,gu) (Eq. 2)
8: ComputePosterior(i,mu,gu) (Eq. 3)
9: for k = 1, . . . , |G| do

10: for j = 1, . . . , |M| do
11: if P (mj∧gk|pt

i)
maxP (mj∧gk|pt

i)
> (1− γ) then

12: Cmod ← Cmod ∪ (mj ,gk)
13: end if
14: end for
15: end for
16: Predi ← randomly chosen (mj ,gk) ∈ Cmod

maximum posterior would be reasonable, in practice there
might be many models that move the agent to the same or a
very similar position. This translates into similarly high val-
ues for the posteriors. For example, a neighbor agent being
pushed by a crowd might be forced to escape from the crowd
to avoid collisions, regardless of the model being used.

To address this, we consider a set, Cmod, of candidate
models for a neighbor that contains all models whose pos-
terior probabilities are within a threshold γ away from the
model with the maximum posterior. As the simulation pro-
gresses and α obtains more observations of how each neigh-
bor moves, its true model should be more easily differentiated
from the other candidate models, and the size of Cmod should
decrease and finally converge to the true model.
Motion Prediction. While our model estimation may suggest
that multiple models fit a neighbor’s observations, we must
choose one model for predicting its future trajectory. To do
this, we select a single model, denoted Predi, randomly from
Cmod. The likelihood of each candidate model being chosen
is proportional to their respective normalized posterior val-
ues. Algorithm 2 shows the model selection procedure.

5 Action Planning
Once a model and goal have been estimated for each neigh-
bor, α can use this information to predict their future motions
along with their interactions with the environment. This al-
lows α to predict how each neighbor will react to potential
collisions and can reduce the uncertainty of the future state of
the environment, enabling α to plan a safe and efficient path.

As the motion of the neighbors might be influenced by
agents not visible to α, and other neighbors can appear at a
later stage, α needs to continuously replan its path to account
for this new information. Therefore, we compute a new plan
at every timestep, where each plan is computed by simulating
the execution of a sequence of actions for a time horizon of T
timesteps, similar to the work in [Godoy et al., 2014]. Algo-
rithm 3 shows the pseudocode of the planning process using
an action set, Actions, for the entire time horizon T .

Action Evaluation. To compare the actions available to α,
each action is evaluated based on how much it helps the agent
to progress towards its goal. We estimate such a progress by
projecting the collision-free velocity computed as a result of
choosing this action onto the normalized goal-oriented vector
of α:

Ra = vnew · g − p

‖g − p‖
(4)

As a result, α promotes goal oriented behavior that is
collision-free.

We consider two types of plans for α, with action spaces
that allow different granularities of control for α’s motion:
a set of preferred velocities, and a set of navigation models.
These two types of plans are complementary to each other
and can be used to address a range of navigation problems.
Planning in the space of different navigation models allows
α to determine which high level behavior is best for inter-
acting with neighbors in a given environment. This might be
desired, for example, in human-robot interactions, where hav-
ing a robot that exhibits human-like behavior allows for more
natural interactions. Planning in the space of preferred veloc-
ities is recommended for traditional multi-robot navigation
problems, where a fine-grained control of the robot’s motion
is typically required.

5.1 Planning in the space of preferred velocities
For a fine-grained motion control, we allow α to select among
a set of 9 preferred velocities (Fig. 2). This set of velocities,
defined in [Godoy et al., 2014], is uniformly distributed in the
space of possible directions of motions, enabling α to adapt
its motion to different local conditions by attempting to move
sideways or backwards from the goal when needed.

In the planning process, α simulates multiple plans of ac-
tions, where each plan involves the execution of a set of
preferred velocities for T timesteps in the future. At each
timestep, α updates its position along with the position of its
neighbors, assuming that they try to reach their inferred goals
using the inferred navigation models.

To determine which actions to include in a plan, we fol-
low the approach in [Godoy et al., 2014]. Figures 2a and 2b
show an example of the plan generation process. We begin

(a) (b)

Figure 2: The 9 actions of VelPlan correspond to moving at
1.5 m/s with different angles with respect to the goal: 0◦,
β, −β, 90◦, −90◦, 180◦, 180◦ + β, 180◦ − β and complete
stop. We use β = 45◦. (a) Simple plans consist of single
actions for the entire time horizon. (b) More complex plans
are computed if planning time allows.

Algorithm 3 Action Selection

1: for all a ∈ Actions do
2: for t = 0, . . . , T − 1 do
3: simulate evolution of neighborhood dynamics
4: Ra ← Ra + vnew · g−p

‖g−p‖
5: end for
6: Ra ← Ra

T
7: end for
8: a∗ ← arg maxa∈ActionsRa

Goal Goal

(a) (b)Shy Aggressive

Figure 3: Example of ORCA behaviors. (a) Using a shy
model, α decides to move around the group. (b) Using the
aggressive model, instead, α makes way between the incom-
ing agents to reach the goal faster.

computing simple plans after taking the same action for each
timestep (Fig. 2a), and progressively (if planning time allows)
generate more complex plans composed by multiple actions
(Fig. 2b). We compute the value of each simulated plan by
computing Ra (Eq. 4) for each timestep in the time horizon.
Finally, we average the reward value for all the plans that be-
gin with the same initial action, and associate the averaged
reward with the initial preferred velocity of the plan. The
planning continues, generating more complex plans until a
specified planning time limit is reached.

Using the space of preferred velocities, α has a more fine-
grained control over its motion which allows it to adapt to a
wide range of environments. We call this approach VelPlan.

5.2 Planning in the space of navigation models
Instead of making decisions in the space of preferred veloci-
ties, the agent could evaluate the space of navigation models.

Since the agent α has to anticipate collisions, we assume
that, at each timestep, it can choose among any of the ORCA
models presented in Section 3.1 (shy, aggressive, or tense).
Depending on the selected model, α adapts its correspond-
ing ORCA parameters, such as time horizon, sensing range,
and assumption of reciprocity in avoiding collisions. Here α
simulates each of the three models for the entire time hori-
zon, computing at each timestep Ra (using Eq. 4). This
type of planning is computationally more efficient than us-
ing preferred velocities (it requires only three simulations of
T timesteps), and results in behaviors that can be explained
from a social point of view. For example, α chooses a more
conservative model (e.g. shy or tense) when congestion is
predicted which allows the agent to avoid it, and a more
aggressive model in scenarios with no obstacles, where α
should move as fast as possible to its goal. Figure 3 shows
different behaviors that α can assume using this type of plan-
ning. We call this planning method SocialPlan.

ca

b

e

d

Figure 4: Scenarios. (a) Incoming. (b) Perp1. (c) Perp2. (d)
Circle. (e) TwoPaths.

6 Experimental Setup and Results
We implemented our inference approach and our two plan-
ning methods, VelPlan and SocialPlan, in C++ and performed
experiments across different simulation scenarios (see Fig-
ure 4). All simulations ran in real-time on a Core i7 CPU
with 8 GB of memory. All reported results correspond to
the average over 50 simulations. Our evaluation focuses on
multi-robot navigation tasks, where we compare VelPlan to
the ORCA framework and to a receding time-horizon ap-
proach which is similar to VelPlan but without an inference
component (NoInference). We also evaluated our SocialPlan
approach in a small social setting, and compared it with an
ORCA-based fixed personality model.

In all scenarios, unless otherwise specified, we assigned
the goal of each agent at the beginning of a simulation and we
uniformly distributed all, but the unknown, navigation mod-
els (Section 3.1) over the set of agents A. To emulate agents
that do not follow any model, we randomized the navigation
parameters and goals of 5% of the agents after the initial goal
and model allocation. We updated the position of α every
∆t = 0.1s, which was also the planning time limit. We em-
pirically set the values of the time horizon T to 50 timesteps,
γ to 0.1%, and used a σ value of 10−4 (Eq. 1), as they pro-
vided the best performance compared to larger values.
Scenarios. We considered five scenarios (Figure 4): In the In-
coming scenario, 30 agents move in the opposite direction of
α, each having chosen a goal from 8 user-defined goals. In the
Perp1 scenario, a crowd of 100 agents moves in a perpendic-
ular direction to α’s motion, towards one goal. In the Perp2
scenario, two groups of 50 agents each move in a perpendicu-
lar direction to α’s motion, towards two opposite goals. In the
Circle scenario, α and 63 agents are placed along the circum-
ference of a circle and must reach their antipodal positions.
Finally, in the TwoPaths scenario, six agents have to navigate
through two narrow corridors towards six goals placed be-
hind α’s starting position. Here, α must choose between two
homotopic paths based on the models of the agents perceived.

6.1 Model Prediction
We evaluate the accuracy of the Bayesian inference based on
two criteria: candidate accuracy, where a prediction is correct
if the true model/goal of the neighbor is in the set Cmod (can-
didate models/goals) and predicted accuracy, where a predic-
tion is correct if the true model/goal is the one used for pre-
diction of the neighbor’s future motion.

Table 1 shows the accuracy of our VelPlan approach in
all scenarios. In general, α can predict with high accu-

Accuracy Incoming Perp1 Perp2 Circle TwoPaths
Candidate Model 94.4 95.5 95.1 94.5 86.4
Predicted Model 91.4 93.5 92.9 90.7 79.2
Candidate Goal 94.7 99.5 98.5 94.8 89.9
Predicted Goal 88.5 98.9 95.4 88.2 81.6

Table 1: Accuracy (%) of VelPlan in terms of goal and model
prediction in our five scenarios.

Method Incoming Perp1 Perp2 Circle TwoPaths
ORCA 51.22 83.28 38.08 5 11.7
NoInference 0 44.12 66.18 0.1 13.04
VelPlan 0 6.96 28.74 0.04 0.02

Table 2: Average collisions per iteration using ORCA, NoIn-
ference and VelPlan.

racy the models of its neighbors because of their distinctive
ways of interacting with other agents. For example, shy and
tense agents try to maintain a larger distance from other non-
reactive or aggressive agents. The lowest accuracy is ob-
served in the TwoPaths scenario. Here, the agents are con-
strained by the walls of the environment, which limits their
motion and makes it more difficult to differentiate between
similar models.

6.2 Number of collisions
Table 2 shows the average number of collisions between α
and its neighbors, using VelPlan, ORCA and NoInference.
Overall, using VelPlan results in significantly fewer collisions
than the other two methods. However, even with VelPlan, α
may collide with other agents. This is evident in crowded en-
vironments, such as Perp2, where the number of agents lim-
its the capacity of α to find a safe motion, for example, when
facing non-reactive agents coming in opposite directions. Us-
ing either NoInference or ORCA, α runs into more collisions
because α incorrectly assumes that agents will share the effort
to avoid collisions, which is not always true.

6.3 Time-efficiency
To measure the time-efficiency of the path that α takes, we
measured the interaction overhead, i.e. the time that it takes
for the agent to resolve interactions with the other agents and
obstacles. The overhead is zero if α is able to move at full
speed in a straight line to its goal (i.e. without deviating from

0	

5	

10	

15	

20	

25	

30	

Incoming	 Perp1	 Perp2	 TwoPaths	 Circle	

In
te
ra
c:
on

	 O
ve
rh
ea
d	
(s
)	

ORCA	

NoInference	

VelPlan	

Figure 5: Interaction overhead for all evaluated approaches.
In all scenarios, VelPlan outperforms ORCA and NoInfer-
ence. The error bars denote the standard error of the mean.

0	

10	

20	

30	

40	

50	

Shy	 Social	 forces	 Non-‐reac7ve	

In
te
ra
c7
on

	 O
ve
rh
ea
d	
(s
)	 ORCA	

NoInference	

VelPlan	

Figure 6: Interaction overhead for agents using the same
model in the Incoming scenario. In all cases, VelPlan matches
or outperforms ORCA and NoInference.

its goal-oriented path). Figure 5 compares the interaction
overhead in all our scenarios using different simulation meth-
ods. As can be seen from the figure, predicting the behavior
of other agents clearly improves the time-efficiency of α’s
navigation. We can observe that VelPlan significantly outper-
forms both NoInference and ORCA in all scenarios. The per-
formance difference is the largest in the Incoming scenario,
where α has enough room to maneuver to avoid non-reactive
agents, while also being able to move close to agents that will
defer to its motion, such as the shy agents. It is worth noting
the difference in performance between Perp1 and Perp2. The
latter scenario is particularly complex, as previously shown
with the lower accuracy values and the large number of col-
lisions. These results, together with Table 2, demonstrate the
utility of the model and goal estimation in the computation of
a safe and efficient path for α.
Single model. We also evaluated the interaction overhead
of α using VelPlan, NoInference and ORCA in the Incom-
ing scenario, when all other agents use either the shy model,
the social force model, or are non-reactive. Results shown in
Figure 6 indicate that, against shy agents, all approaches are
able to find paths with low interaction overhead. Here, the
shy agents make space for α, hence the deviation from the
goal path is minimal. When the other agents are using social
forces, however, only VelPlan realizes that it is best to move
around the group in order to reach the goal faster. In contrast,
using ORCA or NoInference, α gets trapped and pushed back
by these agents because it incorrectly assumes that the other
agents will anticipate potential collisions. Similar behavior
occurs with non-reactive agents, where only VelPlan is able
to successfully avoid getting stuck.

6.4 Social Planning
To analyze the robustness of our planning approach to differ-
ent action spaces, we evaluated the behavior and the interac-
tion overhead of our SocialPlan approach in a small scenario
(see Figure 7a), where α crosses path with 4 other agents
that employ social forces. Here, using SocialPlan means
that α had to choose between being shy, aggressive or tense.
We observe that, using our approach, α chooses an aggres-
sive personality in the beginning as it gets close to the group
(Fig. 7b). Once it realizes it will be pushed away from its
goal, α switches to a tense personality (Fig. 7c), which allows
it to move back for a while and let the group pass. Once this

a b c d

Aggressive Tense Aggressive

t=0 t=5 t=8 t=11

Figure 7: Social Planning example. (a) Initial positions (b)
The agent uses aggressive behavior until its motion is con-
strained by the group. (c) The agent switches to tense be-
havior which pushes it away from the group. (d) After the
group has passed by, the agent assumes again an aggressive
behavior to move fast and unconstrained to its goal.

happens, it adopts an aggressive personality which enables α
to quickly move to its goal (Fig. 7d).

Neighbors
Agent α Shy Social Forces Mixed
Shy 2 3.7 2.6
Aggressive 0 31.5 2.7
Tense 36.8 27.6 4.94
SocialPlan 0 1.5 0.9

Table 3: Interaction overhead(s) in Social Planning for the
scenario in Figure 7a.

We also compared the interaction overhead of α using So-
cialPlan versus using a fixed personality model (shy, tense or
aggressive) during the entire simulation. We varied the model
used by the other 4 agents (only shy, only social forces or a
mix of agent models). Table 3 shows the corresponding re-
sults. We can see that, due to the ability of SocialPlan to
determine the types of the other agents and to switch between
behaviors in real time, α finds velocities that increase its time-
efficiency as compared to choosing a fixed personality model.

7 Conclusions and Future Work
In this paper, we introduced a novel technique to improve the
safety and time-efficiency of an agent navigating in an un-
known environment. Our approach determines the navigation
model and goal of other agents in the environment, and uses
these estimates to predict their future states.

We have assumed a fix number of representative naviga-
tion models are given to us. This is a reasonable assumption,
given that most existing multi-robot navigation approaches
generate behaviors that can be broadly classified as reactive,
non-responsive, or anticipatory. However, our approach does
not attempt to learn navigation models outside of the specified
set of models. To address this limitation, we would like to ex-
plore methods to learn new navigation models from observa-
tions of the agents’ motions. Another possible line for future
work is to combine our local approach with an adaptive global
planning scheme. The work in [Jansen and Sturtevant, 2008;
Golledge, 1995; Van Toll et al., 2012] can provide some in-
teresting ideas in this direction.
Acknowledgments: Partial support for this work is acknowl-
edged from the University of Minnesota Informatics Institute
and NSF through grants #CNS-1544887 and #CHS-1526693.

References
[Barrett and Stone, 2015] Samuel Barrett and Peter Stone.

Cooperating with unknown teammates in complex do-
mains: A robot soccer case study of ad hoc teamwork. In
Proc. AAAI Conference on Artificial Intelligence, 2015.

[Barrett et al., 2013] Samuel Barrett, Peter Stone, Sarit
Kraus, and Avi Rosenfeld. Teamwork with limited knowl-
edge of teammates. In Proc. AAAI Conference on Artificial
Intelligence, 2013.

[Choi et al., 2014] Sungjoon Choi, Eunwoo Kim, and
Songhwai Oh. Real-time navigation in crowded dynamic
environments using gaussian process motion control. In
Robotics and Automation (ICRA), 2014 IEEE Interna-
tional Conference on, pages 3221–3226. IEEE, 2014.

[Cirillo et al., 2014] Marcello Cirillo, Tansel Uras, and Sven
Koenig. A lattice-based approach to multi-robot motion
planning for non-holonomic vehicles. In Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pages 232–
239. IEEE, 2014.

[Fiorini and Shiller, 1998] P. Fiorini and Z. Shiller. Motion
planning in dynamic environments using Velocity Obsta-
cles. Int. J. Robotics Research, 17:760–772, 1998.

[Godoy et al., 2014] Julio Godoy, Ioannis Karamouzas,
Stephen J. Guy, and Maria Gini. Anytime navigation with
progressive hindsight optimization. In IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, 2014.

[Godoy et al., 2016] Julio Godoy, Ioannis Karamouzas,
Stephen J. Guy, and Maria Gini. Implicit coordination in
crowded multi-agent navigation. In Proc. AAAI Confer-
ence on Artificial Intelligence, 2016.

[Golledge, 1995] Reginald G Golledge. Path selection and
route preference in human navigation: A progress report.
Springer, 1995.

[Guy et al., 2011] Stephen J Guy, Sujeong Kim, Ming C Lin,
and Dinesh Manocha. Simulating heterogeneous crowd
behaviors using personality trait theory. In Proceedings of
the 2011 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 43–52. ACM, 2011.

[Helbing et al., 2000] D. Helbing, I. Farkas, and T. Vicsek.
Simulating dynamical features of escape panic. Nature,
407(6803):487–490, 2000.

[Jansen and Sturtevant, 2008] M.R. Jansen and N.R. Sturte-
vant. Direction maps for cooperative pathfinding. In Ar-
tificial Intelligence and Interactive Digital Entertainment
(AIIDE), pages 185–190, 2008.

[Karamouzas et al., 2014] Ioannis Karamouzas, Brian Skin-
ner, and Stephen J Guy. Universal power law governing
pedestrian interactions. Physical review letters, 113(23),
2014.

[Khatib, 1986] O. Khatib. Real-time obstacle avoidance for
manipulators and mobile robots. Int. J. Robotics Research,
5(1):90–98, 1986.

[Kim et al., 2014] Sujeong Kim, Stephen J Guy, Wenxi Liu,
David Wilkie, Rynson WH Lau, Ming C Lin, and Dinesh

Manocha. BRVO: Predicting pedestrian trajectories using
velocity-space reasoning. The Int. J. of Robotics Research,
34(2):201–217, 2014.

[Luna and Bekris, 2011] Ryan Luna and Kostas E. Bekris.
Push and swap: Fast cooperative path-finding with com-
pleteness guarantees. In International Joint Conference
on Artificial Intelligence, pages 294–300, 2011.

[Martinez-Gil et al., 2015] Francisco Martinez-Gil, Miguel
Lozano, and Fernando Fernández. Strategies for simu-
lating pedestrian navigation with multiple reinforcement
learning agents. Autonomous Agents and Multi-Agent Sys-
tems, 29(1):98–130, 2015.

[Melo and Veloso, 2011] Francisco S Melo and Manuela
Veloso. Decentralized MDPs with sparse interactions. Ar-
tificial Intelligence, 175(11):1757–1789, 2011.

[Pelechano et al., 2007] N. Pelechano, J.M. Allbeck, and
N.I. Badler. Controlling individual agents in high-
density crowd simulation. In Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion, pages 99–108, 2007.

[Sharon et al., 2015] Guni Sharon, Roni Stern, Ariel Fel-
ner, and Nathan R Sturtevant. Conflict-based search for
optimal multi-agent pathfinding. Artificial Intelligence,
219:40–66, 2015.

[Solovey et al., 2015] Kiril Solovey, Jingjin Yu, Or Zamir,
and Dan Halperin. Motion planning for unlabeled discs
with optimality guarantees. In Robotics: Science and Sys-
tems, 2015.

[Trautman et al., 2015] Pete Trautman, Jeremy Ma,
Richard M Murray, and Andreas Krause. Robot
navigation in dense human crowds: Statistical models and
experimental studies of human–robot cooperation. The
Int. J. of Robotics Research, 34(3):335–356, 2015.

[van den Berg et al., 2011] Jur van den Berg, Stephen J. Guy,
Ming Lin, and Dinesh Manocha. Reciprocal n-body col-
lision avoidance. In Proc. International Symposium of
Robotics Research, pages 3–19. Springer, 2011.

[Van Toll et al., 2012] Wouter G Van Toll, Atlas F Cook, and
Roland Geraerts. Real-time density-based crowd simula-
tion. Computer Animation and Virtual Worlds, 23(1):59–
69, 2012.

